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The Self-Consistent Mean Spherical Approximation 
for the One-Component Plasma 
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The consequences of choosing the adjustable hard-core diameter in the mean 
spherical approximation for the one-component plasma so as to achieve thermo- 
dynamic consistency between the energy and compressibility equations are 
investigated. Such a choice is found to be possible only for F >  8.5 and, 
although the resulting correlation functions are discontinuous, the height of the 
main peak in the static structure factor is remarkably accurate. Two especially 
noteworthy aspects of the thermodynamic results are that the compressibility 
equation is much more accurate than in any previous approximation free of 
input from computer simulations and that the nonstatic part of the internal 
energy has a I "1/4 dependence in the strong coupling limit in agreement with 
Monte Carlo data. 
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1. INTRODUCTION 

In many different contexts within the equilibrium statistical mechanics of 
classical fluids, self-consistency between the virial and compressibility equa- 
tions of state has been found to be a very strong constraint in achieving 
accurate correlation functions from integral equation theories. In recent 
years, so-called self-consistent calculations have involved the solution of an 
integral equation with at least two free parameters/~i(O, T), where p and T 
are, respectively, the density and temperature of the fluid./zi( 0, T) may then 
be chosen to fix the pressure and compressibility (and possibly other 
quantities) at the values obtained from Monte Carlo (MC) or molecular 
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dynamics simulations. Because this procedure requires the prior availability 
of simulation data for thermodynamic properties so that simulation data 
for the static structural functions will generally also be available, it is most 
useful when the self-consistent structural data are obtained in analytic (or 
at least near analytic) form. Calculations of this type are therefore usually 
based on variants of the mean spherical approximation (MSA) and exam- 
ples of fluids which have been treated in this way are hard spheres (HS), (1~ 
the restricted primitive model electrolyte, (2'3) and the one-component 
plasma (OCP). (4'5) A minor irritation of these calculations is that they 
should strictly be repeated if more reliable simulation data become avail- 
able at a later date, but it should be emphasized that they all yield very 
accurate structural data. 

The original idea of self-consistent integral equations (6) (which is used 
in the present paper) was, however, to solve an equation with a single free 
parameter/~(O, T) chosen to impose self-consistency without any input of 
simulation data. That is, the two equations of state were made identical but 
were not both made identical to some a priori expression. Clearly a 
self-consistent calculation of this type, even for just a single thermodynamic 
state, requires that results be obtained along a complete isotherm. This is 
also true for the self-consistent integral equation of Schneider et al., (7) 
which, although containing no adjustable parameter, does involve an 
explicit density derivative. So far as is known to the present author, this 
equation has not been solved numerically for any classical fluid. 

The earliest self-consistent integral equations were based on the 
Ornstein-Zernike equation with a closure relation intermediate between the 
hypernetted chain (HNC) and Percus-Yevick (PY) closures. The basic idea 
seems to have originated with Rowlinson, (6~ who, however, only carried out 
calculations for the HS fluid at the level of expansion in virial coefficients. 
Numerical calculations for HS were carried out by Lado (8) using the same 
approximation as Rowlinson. Later, Hutchinson and Conkie (9~ applied a 
different HNC-PY hybrid closure both to the HS fluid and to fluids 
interacting through inverse power potentials, especially the sixth and 
twelfth but not including the OCP. More recently, Rosenfeld and 
Ashcroft (1~ proposed a modified HNC (MHNC) theory with which they 
were able, by a suitable choice of their free parameter ~/, to obtain good 
agreement with many simulation data for a wide range of fluids. Tsai (11) 
carried out proper self-consistent calculations with this MHNC scheme, but 
his results for HS and inverse power potentials do not significantly improve 
on those of Ref. 9. 

The numerical computations involved in self-consistent theories are 
rather cumbersome: the virial pressure and the compressibility are both 
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calculated for a series of densities increasing stepwise from zero and the 
compressibility is integrated to yield a second pressure, the free parameter 
being chosen at each density to ensure self-consistency up to that density. It 
is therefore no accident that almost all fluids treated thus have thermody- 
namic properties depending on p and T only through a single combination 
of the two, since this permits a complete description of the fluid based on 
information along a single isotherm. Tsai's self-consistent MHNC calcula- 
tions for the Lennard-Jones fluid along a subcritical isotherm (11~ indicate a 
further difficulty: the compressibility cannot be integrated over a two-phase 
region. This problem was overcome (with some loss of numerical accuracy) 
by differentiating the virial pressure rather than integrating the compress- 
ibility. It is much simpler to use a local criterion for fixing ~ in the MHNC 
scheme and a method based on free energy minimization has recently been 
proposed by Lado. (12) Unfortunately, his compressibility results lack the 
accuracy of those of Ref. 10. 

Although the parametrized closures discussed above do lead to an 
improvement over non-self-consistent results they appear somewhat ad hoc 
and not very physically based. In the MSA for soft-cored potentials, by 
contrast, there appears an adjustable parameter (the hard-core diameter o, 
or equivalently the packing fraction ~7 = ~ ~0o 3) which has a rather natural 
physical interpretation. (13) For most soft-cored potentials, fixing 7(0, T) to 
ensure self-consistency would again involve considerable computational 
effort but in the special case of the OCP the computation required is 
negligible due to the existence of the analytic solution of Palmer and 
Weeks. (14) Thus it is the purpose of this paper to present the self-consistent 
MSA (SCMSA) for the OCP with ~ as the single adjustable parameter and 
without input from simulations. Other criteria for choosing ~ in the MSA 
for OCP have been considered previously by Gillan (15) and MacGo- 
wan (16,17) and the present method will be compared to these. 

2. S T A T E M E N T  OF THE P R O B L E M  

Three recent review articles (18'19'2~ largely devoted to it give a clear 
indication of considerable interest in the OCP. The static properties of an 
OCP (point ions of charge Ze in a uniform neutralizing background) are 
entirely expressible in terms of the coupling constant F = (Ze)2/k8 Ta and 
the dimensionless length x = r/a where a = (3/4~rp) 1/3 is the ion-sphere 
radius. The starting point of the present investigations is the solution of the 
MSA for one-component charged spheres (14) which is directly applicable to 
the OCP. The notation adopted is that of Ref. 16 which is more suitable for 
describing the OCP than the notation of the original solution. The basic 
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equations of the MSA for OCP are 

h(x) = - 1, x < 27 I/3 

C(X) = - -F/X,  X > 2"r/1/3 

= c(x)  + 3 (d~x ,  c ( Ix -  x'l)h(x') h(x) 
,q'll ,.I 

(x) 

(2) 

(3) 

where h(x) and c(x) are, respectively, the total and direct correlation 
functions, and the packing fraction 7 may be regarded as an arbitrary 
function of F. The solution of Eqs. (1)-(3) is 

t 1 5 
(2u - a) + 372/3D2x + �89 2 + ~6(4u - a )x  3 + ~ r x ,  

C(X) = X < 271/3 

[--  F/X,  X > 271/3 

3fo u = ~ F  x h ( x ) d x =  ~ ~lz/3 

1 (37(~ + 2 ) -  R 2) D = l + h ( 2 7 1 / 3 + ) -  67(1 ~ 7 )  2 

(1 + 7 -  �89 x2 

7I/3 

where 

~ l - 3 fo~176 + --xF ] dx 

(4) 

(5) 

(6) 

= -- 172/3(1  -- 27)~ .2- -  2T]1/3(1 -- l'])-I.R~k - (1 -- ~ ) - 4 [ 1 { 2  (21l + 1) 2 ] 

(7) 

x = (3r) '/2 (8) 

(1 - ~)371/3 
R---(~/+�89 1+  (7+ �89  X - 1  (9) 

It is clear from the first equalities of (6) and (7) that u(F, 7) and c~(I', 7/) 
represent, respectively, the dimensionless excess internal energy per ion and 
the dimensionless inverse isothermal compressibility of the one-component 
charged sphere fluid. The corresponding properties of the OCP are 

u~ = u (r ,  7 ( r ) )  (lO) 

~~ = ~( r ,~ ( r ) )  (1 l) 
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and the self-consistency condition to be imposed is 

l u 0 ( r ) +  1 du o 
~~ = 1 + ~ ~ rar (12) 

Equation (12) is equivalent to virial-compressibility consistency since, for 
the OCP, the virial equation of state is 

/ 7o 1 0 
o k s T  1 = -~u (13) 

To be more explicit, the task of solving the MSA for OCP self- 
consistently is effectively that of solving the highly nonlinear ordinary 
differential equation 

11 , , - ~  v d T = C ~ - l - 3 u  9 o-r 

for ~(r), where u(r ,~)  and c~(r,~) are given by (6) and (7), respectively. 
When considering suitable boundary conditions for (t4) it is natural to 
impose on any solution the reasonable physical requirement 

which is equivalent (21'16) to 

D ~ 0 (15) 

(Ou/O~) v ~< 0 (16) 

In terms of T/(F) the above conditions may be stated as 

~ c ( r ) ~ < o ( r ) <  1 (17) 

where ~c(r)  is the defining function of Gillan's continuous MSA 
(CMSA). (JS) Equation (17) is a tighter restriction on ~/(r) than 0 < ~/(r) 
< 1 which is necessary for the MSA to have real solutions. 

The most interesting boundary condition to impose on (14) is ~ ( r ) ~  1 
as r ~ o o ,  which is dictated by (17) since ~ / c ( r ) ~ l  as F ~ o o .  This 
boundary condition will be discussed in Section 3 with the assumption that, 
locally, the solution has a power law behavior, but the question of unique- 
ness of solutions will not be tackled. There follows first a brief digression to 
consider the possibility of satisfying the alternative boundary condition 
~t(r) ~ 0 as F ~ 0 which would give the ideal gas limit. 

In seeking a SCMSA in the limit r ~ 0 it should first be noticed that 
u---~0 as r--*0 irrespective of T/ (0 < ~/< 1). Thus a -+  1 as r---~o is a 
requirement for self-consistency and it is only satisfied if ~ ~ 0 as r o  0. 
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Then the low-order expansions 

u--  - 3r~ 2/3 - ( d - / 2 ) r  3/2 (18) 2 

and 

c~ - 1--~ - 6F~ 2/3 + 8B (19) 

are easily obtained and (14) becomes, in the weak coupling limit, 

[ 1 ]?( 3 u ) _ 9  ~ r--,0] d~/ r-.0 )-~ = 8TI - 14.j 7/2/3 F %. 4-~- F 3/2 (20) 

Since ~/dominates ~/2/3I" provided ~/vanishes more slowly than F 3 and 1 -̀ 3/2 
dominates v12/3F provided ~/vanishes faster than ] "3/4, the right-hand side of 
(20) is always positive as F ~ 0. The left-hand side, however, is negative [in 
view of condition (16) and the positivity of ~/] and so (20) cannot be 
satisfied. The resulting conclusion that there is no SCMSA for OCP in the 
weak-coupling limit appears to be confirmed by the failure to obtain 
numerical self-consistent solutions for I" ~< 8.5 which will be reported in 
Section 4. 

3. THE STRONG COUPLING LIMIT 

As has been explained above, the appropriate boundary condition for 
(14) as F ~  m is ~/(F)~ 1 and it is therefore convenient to work in terms of 
the variable e = 1 - ~/. Assuming only that c(17)~0 as I ' ~  oe yields the 
ion-sphere result (2~ 

u ~  - 9 r ,  r ~  m (21) 

Clearly, from (21) and (12), the first requirement for a SCMSA in the 
strong coupling limit is a ~  - ~F. Supposing now that e cc F-q (q > 0) as 
F ~  ~ ,  the expansion of R depends strongly on whether q > 1/6 or 
q < 1/6. If 0 < q < 1/6, however, it is found that the dominant term in a ~ 
obtained from Eq. (7) is - 3F. For q = 1/6, R tends to a constant value as 
F ~ ~ and the conclusion reached for 0 < q < 1/6 remains true. Gillan's 
CMSA furnishes a particular example of q = 1/6 (22) for which the thermo- 
dynamic inconsistency in the strong coupling limit was earlier demon- 
strated by Rosenfeld and Ashcroft. (t3) 

From the above considerations it is certainly justified in seeking a 
SCMSA at large F to restrict attention to q > 1//6 in which case R can be 

2 Equation (18) shows that any ~(F) which vanishes faster than F 3/4 as 17-~ 0 yields the exact 
linear Debye-H~ckel  limiting result for u ~ A particular example of this was shown 
previously by Palmer (21) for Gillan's choice tic(I" ), when ~ ~ F 3 in the limit F--* 0. 
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expanded in powers 

+ 

+ 

O / ~ 9 s  

of c and e3X leading after tedious algebra to 

3 ~ k 2 n L  ~7~k2s 1~k2s  4@5)k2t[5 �9 - �9 

1 - 3  6 - -  ~ - ~ ) k 3 s  7 �9 , . 1 
A s 

1 ~k4s 
7 ~  " " " 

-4 _ 12e-3 + 4e-2  

(22) 

88 ",2 5 - - 1 ~ 2 - - 2 ~ 2 E 2 - - 4 ) t 2 s  s  " ' " 

1 X4e8 _ 6 4  ~k4s . , . 
81 2187 

-~ 2 @ ~ 7  ~k5C 11 �9 . . 

+ . . -  (23) 

Clearly the two terms 9~ -4 and - ~)2 ( =  _ }F) in equation (23) are both 

potentially dominant. The condition for lowest order self-consistency is 

_ 53_1" + 9 e  - 4  = _ 217 

Hence, to lowest order, 

c - - ( 4 5 / r ) ' / 4  = 0 (24) 

If q > 1 /4  the static term would no longer dominate a ~ and it has already 
been seen in Eq. (21) that the static term always dominates u ~ indepen- 
dently of the value of q. If, on the other hand, 1/6 < q < 1/4  then, as for 
q ~< 1/6, a ~  - 3F. Thus q = 1/4  is the only value which can lead to 

self-consistency to lowest order. It may be remarked at this point that the 
discontinuous MSA (DMSA, approximation IV of Ref. 16) also gave 
E ~ I "-1/4 as F--~ oc but with a different proportionality coefficient such 
that a ~  - ~oF. 

In order to go beyond the lowest order result, E is expanded in powers 
of 0: 

e = ~] b,O", b 1 = 1 (25) 
v = l  
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The lowest-order ~ is sufficient to give u ~ to O(F 1/4) but only gives n ~ 
consistent with this u ~ to O(F) and so b 2, b 3, b 4 must all be fixed suitably to 
obtain ao to O(Fl/4) .  Then u ~ will be determined to O(F-  t/2) and by fixing 
b 5,b6, b 7 a ~ may be made consistent with u ~ to that order. Proceeding in 
this way, a self-consistent strong coupling expansion of the MSA for OCP 
can in principle be carried out to arbitrarily high order in 0. 

It should be noticed, however, that the first few b~ obtained in this way 
are 

/92= _ !  3 

b3= _ 2  9 

5 1 ~  1135 
b4 = ~ + 129----6 

so that 

c = 2.59002F -1/4 - 2.23607F-~/2 _ 13.5134F-3/4 + 136.234F-1 . . . (26) 

- 1 - 6  4 5 )  - g  ~ )  . . .  (27) 

- g - + . . . .  (28) 

Since the coefficients in these asymptotic series are rapidly increasing it 
may be expected that the series will not be very useful for F ~ 170 (in the 
physical fluid phase of the OCP). This is in contrast to the series for e(F) as 
F ~  oo in the CMSA (22) and DMSA. (16'17) In the DMSA, for example, the 
strong coupling expansion agrees remarkably well with the numerical 
results down to F ~ 70. (17) In spite of the rapidly increasing coefficients in 
the present case, the preceding considerations indicate the possibility of a 
SCMSA for the strongly coupled OCP and, as will be mentioned below, its 
numerical results are actually well fitted for 80 < I" < 170 by the functional 
form 

u ~  y +  C (29) 

with y = 1/4, which was chosen on the basis of the asymptotic result (27). 
In many different approximations for the OCP it has been found that 

the nonstatic or thermal part of u ~ is proportional to F y (0 < y < 1) for 
large F in the fluid phase. The nonlinear least-squares fits of DeWitt (23) 
based on Eq. (29) gavey  ~ 1 /4  for the MC data of Hansen (24) b u ry  = 1 /2  
for the CMSA results (tS) and also, with an extra term proportional to in F 
added to (29), for the HNC results. (2s) The later MC data of Slattery et 
al. (26) were accurately represented by (29) with y = 1 /4  and an extra term 
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proportional to r -I/4, but this was a linear least-squares fit assuming 
y = 1/4. The most recent MC data of Slattery eta/. (27) lead to the less 
definite conclusion (28) 0.25 ~< y ~< 0.3. Analytically determined values of y 

a re  available from several theoretical approximations. (22'29'16) Since these 
are conveniently summarized in Ref. 16 they will not be discussed in detail 
here and it is sufficient to recall that the only values of y obtained are 1/4, 
2/5, and 1/2. Thus, although the value of y = 1/4 is indicated with less 
certainty by the latest simulation results than by the previous results, it can 
still be stated that, of all the simple theoretical approaches to the OCP, only 
those yielding y = 1/4 are consistent with the most recent MC data. 

The only approximations for which y = 1/4 are the present SCMSA, 
the DMSA, and the hard-sphere variational approximation (HSVA) of 
DeWitt and Rosenfeld/29) Both HSVA and DMSA yield the same coeffi- 
cient of I "1/4 which is rather close to the value obtained by fitting MC data 
but the corresponding SCMSA coefficient is not so close to the MC value. 
On the other hand, the ability of HSVA and DMSA to give y = 1/4 
depends crucially on the use of a particular approximate expression, 
obtained through the PY virial equation, for the excess entropy of the HS 
fluid, whereas SCMSA is based on the exact requirement of thermody- 
namic consistency. 

4. NUMERICAL RESULTS AND CONCLUSIONS 

The iterative procedure used to obtain numerical solutions for the 
SCMSA is as follows: 

Find ~j(F) such that = 

r 
u ~  = u ( r ,   Ar)) 

1 " ) ujO(r) 

The convergence criterion used was ]a~ , ( I ' ) -  a~ < 10 -7 for all I ' ~  9 
and by taking the initial input a~ obtained through Eq. (12) from a MC 
fit for u~ (26) the required number of iterations was kept down to around 
six. [It should be emphasized that, although using MC data as initial input 
speeds convergence, the final results after iteration are quite independent of 
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any input from simulations. This was checked by using several different 
expressions for a~ Convergence was achieved with greater difficulty for 
8.5 ~< F ~< 9, using a simple mixing scheme, but no self-consistent solution 
could be obtained for F ~< 8.5. 

The differentiation step in the iteration scheme was carried out using a 
five-point finite-difference formula, and varying the F mesh spacing from 
0.1 to 0.5 had no effect on the numerical results obtained. The resultant 
function %c(F) is plotted in Fig. 1, 7/c(F ) and ~/D(F), the corresponding 
functions for CMSA and DMSA, respectively, being plotted also for 
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Fig .  1. T h e  f u n c t i o n s  v/(F)  d e f i n i n g  t h e  v a r i o u s  M S A s  for  O C P :  - - - ,  S C M S A ;  - - -, C M S A ;  

�9 - . ,  D M S A .  
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c o m p a r i s o n .  I t  c a n  b e  s een  t h a t  s e l f - c o n s i s t e n c y  is a c h i e v e d  b y  i n c r e a s i n g  

t he  e x c l u d e d  v o l u m e  r e l a t i ve  to t h e  o t h e r  M S A s  b u t  n o t  b y  v e r y  m u c h  

r e l a t i ve  to t he  D M S A  a t  h i g h  F. A n  a l t e r n a t i v e  less a c c u r a t e  m e t h o d  of  

d i f f e r e n t i a t i o n  w h i c h  is n e v e r t h e l e s s  of  s o m e  i n t e r e s t  was  e m p l o y e d  for  

80 ~< F ~< 170: the  r e su l t s  for  u~  w e r e  l e a s t - s q u a r e s  f i t t ed  b y  (29)  w i t h  

y = 1 / 4  ( f ixed  o n  t he  b a s i s  of  t he  F ~  ~ l imi t )  a n d  a ~  was  o b t a i n e d  

b y  a n a l y t i c  d i f f e r e n t i a t i o n  of  th i s  fit. R e s u l t s  f o u n d  in  th i s  w a y  w e r e  

r e m a r k a b l y  c lose  to t he  m o r e  a c c u r a t e  r e su l t s  d e s p i t e  t he  d o u b t s  m e n t i o n e d  

in  S e c t i o n  3 a b o u t  t he  a p p l i c a b i l i t y  of  t he  s t r o n g  c o u p l i n g  e x p a n s i o n  to  t h e  

p h y s i c a l  f l u id  p h a s e .  

T a b l e s  I a n d  I I  c o m p a r e  t he  O C P  i n t e r n a l  e n e r g i e s  a n d  c o m p r e s s i b i l i -  

ties, r e spec t i ve ly ,  f o r  t he  d i f f e r e n t  M S A s  w i t h  t he  M C  re su l t s  of  S l a t t e r y  et  

a/.,  (26) O~~ b e i n g  o b t a i n e d  f r o m  U ~  t h r o u g h  Eq.  (12). T h e  S C M S A  u ~ is 

c o n s i s t e n t l y  l o w e r  t h a n  U ~  ( t he  m a g n i t u d e  of  0 is a n  o v e r e s t i m a t e )  USCMSA 
fo r  al l  v a l u e s  of  F / >  8.5 b u t  t h e  d i s c r e p a n c y  is n e v e r  m o r e  t h a n  1%. T h e  

s e l f - c o n s i s t e n t  u ~ is m o r e  a c c u r a t e  t h a n  G i l l a n ' s  v a l u e  fo r  F >~ 50 a n d  less 

a c c u r a t e  fo r  F ~ 50. D M S A  resu l t s  fo r  u ~ a r e  g e n e r a l l y  t he  m o s t  a c c u r a t e  a t  

al l  v a l u e s  of  F w h e r e  t h e y  exist .  A s  w as  a n t i c i p a t e d ,  t he  m o s t  d r a m a t i c  

c o n s e q u e n c e  fo r  t he  t h e r m o d y n a m i c  p r o p e r t i e s  of  i m p o s i n g  s e l f - c o n s i s t e n c y  

o n  t he  M S A  is t he  i m p r o v e m e n t  in  t h e  c o m p r e s s i b i l i t y ,  w h i c h  is a l w a y s  

w i t h i n  1% of  t he  M C  v a l u e  f o r  F > 10 a n d  is r e l a t i ve ly  e v e n  b e t t e r  a t  h i g h e r  

Table I. Dimensionless Excess Internal Energy of the OCP 

U O-  UOMc 

F u~  SCMSA CMSA DMSA 

10 - 7.99 - 0.08 - 0.06 - -  
20 - 16.67 ~ - 0.12 0.00 - -  
30 - 25.44 - 0.14 0.06 - -  
40 - 34.25 - 0.16 0.13 - -  
50 - 43.09 - 0.17 0.19 - -  
60 - 51.96 - 0.18 0.25 0.14 
70 - 60.83 - 0.19 0.30 0.11 
80 - 69.71 - 0.20 0.35 0.08 
90 - 78.61 - 0.20 0.40 0.06 

100 - 87.51 - 0.21 0.45 0.04 
110 - 96.41 - 0.22 0.50 0.02 
120 - 105.32 - 0.23 0.54 0.00 
130 - 114.23 - 0.24 0.59 - 0.03 
140 - 123.15 - 0.25 0.63 - 0.05 
150 - 132.07 - 0.26 0.67 - 0.07 
160 - 140.99 - 0.27 0.71 - 0.09 
170 - 149.92 - 0.28 0.75 - 0.12 
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Table II. Dimensionless Inverse Isothermal 
Compressibility of the OCP 

,11 

(x 0 

F MC SCMSA CMSA DMSA 

1 0  - 2 . 6 2  - 2 . 6 5  - 2 . 8 0  - -  

2 0  - 6 . 5 0  - 6 . 5 4  - 7 . 7 5  - -  

3 0  - 1 0 . 4 1  - 1 0 . 4 6  - 1 2 . 9 5  - -  

4 0  - 1 4 . 3 4  - 1 4 . 4 0  - 1 8 . 2 7  - -  

5 0  - 1 8 . 2 8  - 1 8 . 3 5  - 2 3 . 6 8  - -  

6 0  - 2 2 . 2 3  - 2 2 . 3 0  - 2 9 . 1 4  - 2 7 . 9 6  

7 0  - 2 6 . 1 8  - 2 6 . 2 5  - 3 4 . 6 5  - 3 2 . 2 6  

8 0  - 3 0 . 1 4  - 3 0 . 2 1  - 4 0 . 1 9  - 3 6 . 5 0  

9 0  - 3 4 . 1 0  - 3 4 . 1 8  - 4 5 . 7 6  - 4 0 . 6 7  

1 0 0  - 3 8 . 0 6  - 3 8 . 1 4  - 5 1 . 3 6  - 4 4 . 7 8  

1 1 0  - 4 2 . 0 2  - 4 2 . 1 1  - 5 6 . 9 7  - 4 8 . 8 2  

1 2 0  - 4 5 . 9 9  - 4 6 . 0 8  - 6 2 . 6 0  - 5 2 . 8 0  

1 3 0  - 4 9 . 9 5  - 5 0 . 0 5  - 6 8 . 2 5  - 5 6 . 7 3  

1 4 0  - 5 3 . 9 2  - 5 4 . 0 2  - 7 3 . 9 1  - 6 0 . 6 1  

1 5 0  - 5 7 . 8 9  - 5 7 . 9 9  - 7 9 . 5 8  - 6 4 . 4 4  

1 6 0  - 6 1 . 8 6  - 6 1 . 9 7  - 8 5 . 2 7  - 6 8 . 2 4  

1 7 0  - 6 5 . 8 3  - 6 5 . 9 4  - 9 0 . 9 6  - 7 2 . 0 0  
III I 

F. Thus OLSCMS A 0  is by far the most accurate OCP compressibility obtained 
from any approximation with no simulation input. 

Figure 2 shows direct correlation functions from MSAs along with MC 
data (3~ for F = 40, 100, and 160. SCMSA overestimates the magnitude of 
c(0) but approaches the "exact" results away from x - - 0  because 
CscMsa(X), unlike CMc(X), has a nonzero derivative at x = 0. Although 
SCMSA clearly improves on CMSA, especially at high F, CDMsa(X ) appears 
to be the most accurate result at large F, mainly due to its short-range 
behavior. The fact that 0 obtained from Eq. (7) is nevertheless much O/SCMSA 
more accurate than the corresponding 0 indicates that the region aDMSA 
where r + F/x  ~ 0 is much more important in determining ~0 than the 
region x ~ 0. 

Figure 3 shows static structure factors S(k) determined from MC 
data (30 and from the SCMSA for several values of F. The SCMSA results 
are remarkably accurate for the height of the principal peak but this peak is 
always displaced to too large a value of k and the oscillations in the tail of 
S(k) are both out of phase with the "exact" results and do not decay 
sufficiently rapidly. This last feature is an expected consequence of the 
discontinuity in h(x). Figure 4 compares the static structure factors from 
the various MSAs at F = 100 and it is clear that SCMSA gives the best 
representation of the main peak. None of the simple MSAs gives a good fit 



The Self-Consistent MSA for the OCP 135 

0.0 
0 

- 50 f 

- I 0 0  

C(X)  

-150 

- 2 0 0  

Fig. 2. 

X 

0.,5 1.0 1.5 2.0 
' I ' I ; I ' 

1 

/ . , . ' "  

I " = 1 0 0  ~ .  """ / " 

, I I I i I , 

ocP  direct correlation functions: x x x, MC, MSAs as for Fig. I. 

to the oscillatory tail of S(k) and such a fit can only be obtained from 
more complicated approximations.  (4,5) 

In conclusion, it m a y  be remarked that the surprising accuracy of 
Gillan's 1974 results (15) seems to have discouraged until recently attempts 
to obtain even better MSA results for the OCP. The present paper  and 
Refs. 16 and 17 suggest a new atti tude to such approximations:  Gillan's  
choice should be regarded as a lower bound  on possible choices of rt(F ) 
since this is necessary for positivity of 1 + h(x). Continui ty  of h(x) is of 
course desirable but  not  overwhelmingly so when there is in any case no 
chance  of obtaining a smooth  h(x). Although the failure of the D M S A  for 
I '~< 53.6 was a serious drawback,  so that moderately  successful at tempts 
have been made  to extend it to lower values of F, (17) the failure of SCMSA 
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for F ~< 8.5 is quite unimportant since the hard-core aspect of the MSA is 
well known to be inaccurate at lower F. 

The continuity condition on which the CMSA for OCP was originally 
based has been shown to be equivalent to au/aT I = 0, (21,32,16) but there is no 
clear physical significance for this thermodynamic statement. Both DMSA 
and SCMSA, however, are based on well-established thermodynamic crite- 
ria and they give superior results to CMSA for OCP at least at very strong 
coupling. It may therefore be expected that the use of thermodynamic 
rather than continuity conditions in MSAs for other soft-cored fluids will 
yield similarly improved results, albeit at some expense in the ease of 
obtaining them. In this connection it should be noticed that, since the 
SCMSA for OCP does not work right down to F = 0, the usual numerical 
procedure adopted in self-consistent calculations (8'9) of integrating the 
compressibility from 0 = 0 to obtain the compressibility equation of state 
would not have been possible here. The ease of the preceding computation 
is entirely due to the existence of the analytic expressions of Palmer and 
Weeks (14) and so SCMSAs for fluids other than the OCP may require much 
greater computational labor, especially if they also fail at 0 = 0. 

Ionic mixtures in a uniform background perhaps represent the one 
class of fluids where a SCMSA might be calculated almost as easily as for 
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the OCP. The simplest such calculation would utilize the MSA solution of 
De Angelis et al. for a binary mixture of charged hard spheres with 
different charges but equal diameters. (33) A separate computation of the 
type described above would have to be carried out for each ratio of charges 
and each ratio of concentrations. On the basis of the OCP results, the 
strong coupling thermal energies could be expected to be quite accurate. 
These can have important implications for phase separation in certain 
astrophysical situations and no extensive MC data for ionic mixtures have 
been published. 
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